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ABSTRACT: In a previous article, a general model for the condensation copolymeriza-
tion of mono and bifunctional monomers was developed in which the sequence length
distribution was calculated statistically from the concentrations of linkages (e.g.,
OCONHO) labeled by the identities of the participating monomer units. A set of
balance equations for the effect of each major reaction upon these concentrations, those
of the end groups, and the moments of the chain-length distribution completed the
general model framework for linear polymers. In this article, this technique is extended
to the case of nonlinear polymerizations with multifunctional monomers capable of
branch or gel formation. This modification is required because in nonlinear polymer-
ization, the moments of the chain-length distribution diverge at the gel point, and the
traditional description of the sequence length distribution is only well defined for
macromolecules consisting of a single backbone chain. Although the balance equations
for the end group and linkage concentrations presented in the previous article are
completely transferable, the statistical techniques must be modified to accommodate
branch and network chain architectures. By coupling the general kinetic model with the
recursive approach of Macosko and Miller for the calculation of sol/gel properties, one
can describe the microstructures of a wide variety of systems such as those in which the
copolymer has a blocky microstructure caused by interchange reactions between mul-
tiple components. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 266–274, 2001
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INTRODUCTION

In recent years there has been increased interest
in using condensation polymerization to produce
copolymers with controlled microstructures. In a
previous article, a general model was developed to
describe these systems for an arbitrary number of

mono- and bifunctional monomers. The character-
istics of the sequence length distribution were
calculated statistically from a set of transition
probabilities, P(UjuUi), that in marching down a
chain in a consistent direction, a monomer unit of
type i is followed by one of type j. These transition
probabilities were, in turn, calculated from the
concentrations of the end groups and linkages
(e.g., OCONHO), labeled by the identities of the
two joined monomers. Balance equations were
presented for the effect of each reaction upon the
concentration state variables, allowing a full dy-
namic description of batch and continuous copo-
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lymerization processes. As a process of moving
down a chain in a consistent direction is only well
defined for polymers comprised of a single back-
bone, a new approach is required for systems with
long-chain branching or gelation. The moment
approach to calculate the number and weight av-
erage chain lengths is also not applicable to non-
linear polymerization, as these properties diverge
at the gel point.

In this article, an alternative method is pre-
sented to calculate the copolymer microstructure
of nonlinear polymers based upon the end group
and linkage concentrations. The recursive ap-
proach of Macosko and Miller1–3 is used to predict
the gelation properties for a system of arbitrary
complexity, and a general criterion for gel forma-
tion is presented. In this method, the weight-
average chain length is obtained by calculating
the expected size of the molecule attached to a
randomly chosen monomer unit through linkages
of its functional groups. At the gel point, this
expected weight diverges to infinity, beyond
which point the sol fraction is calculated from the
probability that a randomly chosen monomer unit
is attached to a molecule of finite size.

Although this statistical model is strictly valid
only for batch polymerizations because it neglects
the past history when reconstructing sample
chains from transition probabilities, in the previ-
ous article it was shown that such an approach is
often applicable to continuous processes as well.
Because each chain need suffer only one fracture
event (from reverse condensation or interchange)
on average during the mean residence time to
relax the chain-length distribution, it is often the
case that chain recombination yields uniform mi-
crostructures across all molecular weights, and
that the product of a continuous process is similar
to that of a batch polymerization at the same
end-group conversion.

As the set of linkage concentrations encodes
more information about the monomer connectiv-
ity than the set of monomer concentrations and
end-group conversions, the statistical model pre-
sented here is equally valid for systems with
blocky microstructures, such as would be ex-
pected with unequal reactivities between mono-
mer pairs or from randomization of a physical
blend of component polymers. The contribution of
this work to the Macosko-Miller model is the abil-
ity to describe such nonrandom microstructures
and the effect of monomer connectivity in such
cases upon the gelation phenomena. Expressing
the gelation model in terms of linkage probabili-

ties also allows the use of the general polyconden-
sation kinetics model presented in the first article
for nonlinear polymerizations of any number of
monomers with arbitrary functionalities.

The use of this general gelation model is intro-
duced for the case in which a monomer undergoes
interchange reaction with a preformed gel, alter-
ing the network connectivity as it modifies the
copolymer microstructure. Such a process is sim-
ilar to chemical healing, in which chain random-
ization fuses together two polymer samples. Ex-
pressing the gelation parameters in terms of the
linkage moments allows the description of the gel
microstructure at any time during the random-
ization process.

CHARACTERIZATION OF MONOMER
CONNECTIVITY

In the previous article, the statistical properties
of the sequence length distribution were derived
from a set of transition probabilities describing
the likelihood that a monomer unit of a certain
type follows another one along the chain back-
bone. In a system that is branched or forms a gel,
one can no longer speak of travelling down a
polymer chain in a consistent direction; therefore,
different transition probabilities are required to
describe the connectivity between monomers.
First, the probability that an acid group from an
i-type monomer chosen at random is bonded to a
Bj group is calculated.

P~Uj 2 ba 2 Uiuai! 5 H~ai 2 1!
Lij

Ai 1 ShLih
(1)

Here, as in the first article, Ai is the concen-
tration of acid end groups from monomer i, Bj is
the concentration of base ends from monomer j,
and Lij is the concentration of the linkage formed
from these two groups. The probability that a
randomly chosen i-type acid group remains unre-
acted is

P~Aiuai! 5 H~ai 2 1!
Ai

Ai 1 ShLih
(2)

The Heaviside function, H( x), ensures that i-
type monomer has at least one acid functional
group. Equivalent probabilities are defined for
the bi base group sites on the type-i monomer.
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P~Uj 2 ab 2 Uiubi! 5 H~bi 2 1!
Lji

Bi 1 ShLhi
(3)

P~Biubi! 5 H~bi 2 1!
Bi

Bi 1 ShLhi
(4)

For a branched or gelating system, the connec-
tivity of the monomers is no longer simply ex-
pressed in terms of the distributions of the dyad
and triad sequences. Because there are multiple
acid and base groups on a single monomer unit,
there are several possible arrangements of re-
acted and unreacted end groups and a more gen-
eral expression than the triad concentrations is
required. Of the ai acid groups on an i-type mono-
mer, if nAi

is the number of groups that remain
unreacted and naij

is the number that are bonded
to Bj groups, the following partitionings of the
acid end groups (and similarly for the base
groups) are possible.

nAi, naij [ @0, ai# nAi 1 O
j

naij 5 ai

nBi, nbji [ @0, bi# nBi 1 O
j

nbji 5 bi (5)

The probability that an i-type monomer unit
chosen at random has one of these partitionings of
the end group states is

P~nAi, $naij%, nBi, $nbji%uUi!

5 H ai!
nAi! P j naij!

@P~Aiuai!#
nAi P

j

3 @P~Uj 2 ba 2 Uiuai!#
naijJ

3 H bi!
nBi! P j nbji!

@P~Biubi!#
nBi P

j

3 @P~Uj 2 ab 2 Uiubi!#
nbjiJ (6)

The first factor on the left in eq. (6) is the
probability that of the ai acid groups, nAi

are
unreacted and naij

are linked to a base group from
j-type monomer; the ratio of factorials being the
number of permutations with the same partition-
ing of the acid groups. The second factor is a
similar expression for the base groups. When this
formula is applied to a bifunctional monomer, one

obtains probabilities for finding specific triad se-
quences. For example, if the i-type monomer has
a single acid and a single base group (ai 5 bi
5 1), the probability P(nAi

5 0, naij
5 djh, nBi

5 0, nbji
5 djk) gives the likelihood that an i-type

monomer unit chosen at random is the center of a
Uh 2 Ui 2 Uk triad sequence with the Uh bonded
to the acid side and the Uk bonded to the base
side.

CALCULATION OF GEL PROPERTIES

In addition to the copolymer composition, the ef-
fect of monomer conversion and connectivity upon
the overall chain length distribution and the ge-
lation properties (sol fraction, crosslink density,
etc.) is also required. Although population bal-
ances for the sequence length distribution in ge-
lating systems have been developed,4–6 the eval-
uation of the breakage probabilities required for
the reverse condensation reaction is complex, and
a tractable moment equation approach is unavail-
able. The weight-average molecular weight and
postgel properties can be calculated using the re-
cursive statistical approach developed by Ma-
cosko and Miller.1–3 This method is essentially an
extension of the Flory most probable distribution
to nonlinear gelating polymers, and therefore,
does not include residence time effects; however,
interchange and reverse condensation reactions
often negate the effect of the residence time dis-
tribution so that the statistical approach is appli-
cable also to many continuous systems. This
model also assumes that all linkages are formed
between different molecules, and therefore, ig-
nores the presence of intramolecular cyclization.
The effect of intramolecular reaction is to require
higher end-group conversions for the formation of
a gel than are predicted by the theory; however,
one typically prefers such a conservative estimate
of the gel-point conversion.

In this section, the Macosko-Miller model is
expressed in terms of the linkage concentrations,
allowing one to describe blocky microstructures
and to couple the gelation model to the general
framework for polycondensation kinetics pre-
sented in the first article. The general idea behind
the approach is to calculate the expected weights
of sections of the molecule that are observed by
looking outwards or inwards across bonds origi-
nating from a given monomer unit (Fig. 1). If we
choose a monomer unit at random, the expected
molecular weight of the chain to which the unit is
attached is equal to the sum of the weight asso-
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ciated directly with the monomer unit, WUi

1 aiWai
1 biWbi

, and the expected molecular
weights of the sections of chain attached to each
bond site. The definitions of the weights are ex-
plained in Figure 2.

The expected weight looking outwards from a
given bond site on an i-type monomer unit is
expanded in terms of the expected values if the
functional site has not reacted, or if the site is
linked with another monomer of a specified type.
The set of equations obtained from this procedure
is recursive in the sense that after a round of the
expansion process, the possible outcomes from
further expansion are statistically equivalent to
states previously encountered. This closes the set
of equations and allows the expected weight val-
ues to be calculated from simple matrix expres-
sions. The sum of the expected weights averaged
over the different monomer unit types yields the
weight-average molecular weight. The weight-av-
erage degree of polymerization is obtained if all
weight parameters are given the value of zero
except for the weight of the monomer unit itself,
WUi

, which is given a value of 1.
The first step in the recursive calculation pro-

cedure is to expand the expected weight looking
outwards from one of the acid sites on an i-type
monomer unit in terms of the possible states of
the acid site (unreacted or bonded to a Bj group).

E~WAi
out! 5 O

j

E~WAi
outuUj 2 ba 2 Ui!

3 P~Uj 2 ba 2 Uiuai! 1 E~WAi
outuAi!P~Aiuai! (7)

The expected weight when the acid site is un-
reacted is simply the weight of the condensate
fragment originating from the acid group (Fig. 2).

E~WAi
outuAi! 5 WCAi (8)

The expected weight when the acid site is
bonded to a Bj group is equal to the expected
weight looking in from a base site on a j-type
monomer unit.

E~WAi
outuUj 2 ba 2 Ui! 5 E~WBj

in! (9)

The expected weight looking in across the Bj
unit is equal to the sum of the weight associated
directly with the j-type monomer unit and the
expected weights looking out from each of the
other sites on this unit.

E~WBj
in! 5 WUj 1 Wbj 1 aj@Waj 1 E~WAj

out!#

1 ~bj 2 1!@Wbj 1 E~WBj
out!# (10)

This expression is used to eliminate the ex-
pected “in” weights in eqs. (7) and (9) to yield

E~WAi
out! 5 H O

j

@~WUj 1 ajWaj 1 bjWbj! 1 ajE~WAj
out!

1 ~bj 2 1!E~WBj
out!#P~Uj 2 ba 2 Uiuai!J

1 WCAiP~Aiuai! (11)

The expected weight looking out from a Bi site
is obtained from a similar calculation.

E~WBi
out! 5 H O

j

@~WUj 1 ajWaj 1 bjWbj! 1 ~aj

2 1!E~WAj
out! 1 bjE~WBj

out!#P~Uj 2 ab

2 Uiubi!J 1 WCBiP~Biubi! (12)

Figure 2 Definitions of molecular weights in gel
equations.

Figure 1 Definition of expected weights in the Ma-
cosko-Miller method for the simulation of gelation phe-
nomena.
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When matrices and column vectors are defined
with the following elements,

@PAB#ij 5 P~Uj 2 ba 2 Uiuai!

@PBA#ij 5 P~Uj 2 ab 2 Uiubi!

@a#ij 5 ajdij @b#ij 5 bjdij

@E~WA
out!#i 5 E~WAi

out!

@E~WB
out!#i 5 E~WBi

out!

@WPCA#i 5 WCAiP~Aiuai!

@WPCB#i 5 WCBiP~Biubi!

@WU#i 5 WUi 1 aiWai 1 biWbi (13)

the expressions for E(WAi

out) and E(WBi

out) can be
rewritten in the following matrix forms.

E~WA
out! 5 PABWU 1 PABaE~WA

out!

1 PAB~b 2 I!E~WB
out! 1 WPCA (14)

E~WB
out! 5 PBAWU 1 PBA~a 2 I!E~WA

out!

1 PBAbE~WB
out! 1 WPCB (15)

I is the identity matrix. Solving equation (15) for
E(WB

out) yields

E~WB
out! 5 @I 2 PBAb#21@PBAWU

1 PBA~a 2 I!E~WA
out! 1 WPCB] (16)

When this is inserted into eq. (14), a decoupled
expression is obtained.

E~WA
out! 5 @I 2 PABa 2 PAB~b 2 I!

3 ~I 2 PBAb!21PBA~a 2 I!]21@PABWU 1 WPCA

1 PAB~b 2 I!~I 2 PBAb!21~PBAWU 1 WPCA!] (17)

This solution for E(WA
out) is then used to calcu-

late E(WB
out) from eq. (16). The weight-average

molecular weight is obtained by averaging over
each monomer type the expected weight, E(Wi),
of the molecule to which a randomly chosen i-type
monomer unit is attached. The mass fraction of
each monomer type, vi, is used as the weight
function in the averaging procedure.

M# w 5 O
i

E~Wi!vi (18)

E~Wi! 5 WUi 1 aiWai 1 biWbi

1 aiE~WAi
out! 1 biE~WBi

out! (19)

vi 5
~WUi 1 aiWai 1 biWbi!Ui

Sh~WUh 1 ahWah 1 bhWbh!Uh
(20)

In eq. (17), as the reaction proceeds towards
higher conversions, the matrix inside the bracket
that is inverted nears singularity, causing the
weight average molecular weight to diverge. The
singularity of this matrix, therefore, offers a gen-
eral criterion for the onset of gelation that is valid
for systems with a blocky microstructure as well
as those following Bernoullian statistics.

Dgel 5 det@I 2 PABa 2 PAB~b 2 I!

3 ~I 2 PBAb!21PBA~a 2 I!# 5 0 (21)

These expressions allow the prediction of the
critical gel point; however, the method can also
model postgelation properties such as the sol frac-
tion of each species and the concentration of each
monomer species serving as a crosslink. The ap-
proach to calculate sol fractions involves calculat-
ing the probability that the section of chain look-
ing out from a given functional site is of finite
molecular weight. If all sites on an i-type mono-
mer unit are attached to finite chain segments,
the unit is in the sol phase; otherwise, it is part of
the gel. The total sol fraction is equal to the av-
erage of the monomer sol fractions using the mass
fraction of each monomer type as a weight func-
tion in the averaging procedure.

The probability P(FAi

out) that a randomly chosen
Ai site is not joined to part of the infinite network
is expanded in terms of the possible states (unre-
acted or linked to a Bj group) of this site.

P~FAi
out! 5 O

j

P~FAi
outuUj 2 ba 2 Ui!

3 P~Uj 2 ba 2 Uiuai! 1 P~FAi
outuAi!P~Aiuai! (22)

If the end group has not reacted, the probabil-
ity of finding a finite segment is obviously equal
to 1.

P~FAi
outuAi! 5 1 (23)
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The probability of finding a finite chain at a
reacted site is conditional upon the attached j-
type monomer unit having finite chain segments
at all of its other functional groups.

P~FAi
outuUj 2 ba 2 Ui! 5 P~FBj

in!

5 @P~FAj
out!#aj@P~FBj

out!#bj21 (24)

The equations for P(FAi

out), and similar ones for
P(FBi

out), obtained using the recursion procedure
are

P~FAi
out! 5 O

j

@P~FAj
out!#aj@P~FBj

out!#bj21

3 P~Uj 2 ba 2 Uiuai! 1 P~Aiuai! (25)

P~FBi
out! 5 O

j

@P~FAj
out!#aj21@P~FBj

out!#bj

3 P~Uj 2 ab 2 Uiubi! 1 P~Biubi! (26)

These equations must be solved numerically;
however, the solution with all finite chain proba-
bilities equal to 1 exists at all times. When the
conversion is below the gel point, this is the solu-
tion of interest; however, for the postgelation re-
gime, this solution is unwanted. Following Miller
and Macosko,2 this solution is factored out by
putting eq. (25) in the following form.

0 5 @P~FAi
out! 2 1#@P~Ui 2 ba 2 Uiuai!P~FBi

out!bi21

3 O
h50

ai21

P~FAi
out!h 2 cAi] (27)

The term cAi
is determined by comparing (27)

with the original eq. (25). The desired solution is
then calculated by setting the term in the second
set of brackets on the left in (27) to zero to obtain
eq. (28).

P~Ui 2 ba 2 Uiuai!P~FBi
out!bi21 O

h50

ai21

P~FAi
out!h

5 @1 2 P~FAi
out!#21$P~Ui 2 ba 2 Uiuai!P~FBi

out!bi21

2 P~FAi
out! 1 P~Aiuai! 1 O

jÞi

P~FAj
out!ajP~FBj

out!bj21

3 P~Uj 2 ba 2 Uiuai! (28)

The unwanted root at P(FBm

out) 5 1 is removed
by an identical procedure to yield

P~Ui 2 ab 2 Uiubi!P~FAi
out!ai21 O

h50

bi21

P~FBi
out!h

5 @1 2 P~FBi
out!#21$P~Ui 2 ab 2 Uiubi!P~FAi

out!ai21

2 P~FBi
out! 1 P~Biubi!

1 O
jÞi

P~FAj
out!aj21P~FBj

out!bjP~Uj 2 ab 2 Uiubi! (29)

Once eq. (28) and (29) have been solved numer-
ically, the probability that a randomly chosen Ui
is part of the sol fraction is calculated directly.

P~Fi
out! 5 P~FAi

out!aiP~FBi
out!bi (30)

These sol fractions for each monomer are then
averaged using the monomer mass fractions as a
weight function to obtain the overall fraction of
polymer in the sol phase.

vsol 5 O
i

viP~Fi
out! (31)

From these probabilities that a given func-
tional site is connected to a finite section of chain,
the probability, P(Xi, na, nb), that a randomly
chosen i-type monomer unit is a connected to the
infinite network through na acid sites and nb base
sites is easily calculated.

P~Xi, na, nb!

5 S ai

na
DP~FAi

out!ai2na@1 2 P~FAi
out!#naS bi

nb
D

3 P~FBi
out!bi2nb@1 2 P~FBi

out!#nb (32)

The concentration of i-type crosslink units is
equal to the product of the concentration of i-type
monomer units with the probability that a ran-
domly chosen unit is connected to the infinite
network by at least three linkages.

Xi 5 Ui O
na51

ai O
nb51

bi

H~na 1 nb 2 3!P~Xi, na, nb! (33)

The total crosslink density is simply the sum of
the crosslink concentrations of each monomer
type.
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Xtot 5 O
i

Xi (34)

Figure 3 demonstrates the use of this model for
the simulation of simple gelation phenomena.
This figure shows the dependence of the gelation
point upon the trifunctional base (BBB) mono-
mer concentration in a system of AA, BB, and
BBB monomers. The parameter r is the mol frac-
tion of the base monomer that is trifunctional,
and for each r the monomer concentrations are
adjusted such that the end-group concentrations
are balanced. The weight-average molecular
weights diverge when the determinant Dgel ap-
proaches zero.

The capability of this model to handle blocky
microstructures in gelating systems is illustrated

in Figure 4. For an initial network of a bifunc-
tional AA monomer, UAA 5 0.6, and a trifunc-
tional BBB monomer, UBBB 5 0.4, at 85% con-
version, unreacted bifunctional BB monomer,
UBB 5 0.15, is added at time zero and the system
undergoes interchange by alcoholysis. Initially,
none of the BB monomer is linked to the infinite
network and the fraction of BB in the sol phase is
one. The incorporation of the BB monomer into
the network through interchange eventually loos-
ens the network and increases the overall sol
fraction. Above a certain concentration of BB
monomer, the network is completely dissolved.

Figure 3 Gelation of a system of an AA, a BB, and a
BBB monomer at different concentrations of the BBB
monomer. (a) DPw. (b) Gelation Determinant Dgel.

Figure 4 Modification of the structure of a network of
AA and BBB monomers after incorporation of BB
monomer into network through alcoholysis inter-
change. Initial AA/BBB conversion of 85% with UAA

5 0.6, UBBB 5 0.4. (a) Probability that a randomly
chosen AA, BBB, or BB monomer will be in the sol
phase (i.e., joined to chain of finite size). Overall weight
fraction in the sol phase. Calculated for UBB 5 0.15.
(b) Overall sol weight fraction at different UBB.
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The use of the original Macosko-Miller method
with Bernoullian statistics (i.e., linkage concen-
trations proportional to monomer concentrations
and the functional group conversions of each) only
describes the final properties of the system as t 3
`. The modified expressions with transition prob-
abilities defined in terms of linkage moments al-
low the calculation of the sol/gel properties at
each point during the randomization process.

CONCLUSIONS

A general model for the description of monomer
connectivity and network properties of condensa-
tion copolymers has been presented in which the
method of Macosko and Miller is expressed in
terms of the concentrations of monomer-specific
linkage groups. The extension of the method to
include these linkage concentrations encodes suf-
ficient information to model the effect of nonran-
dom microstructures upon gelation phenomena.
The effect of the condensation and interchange
reactions upon the properties of nonlinear poly-
mers is calculated from the rates of change of the
end group and linkage concentrations using the
balance equations presented in the first article of
this two-part series. The use of the model is dem-
onstrated for a system in which two components
have been brought into contact and allowed to
undergo interchange reaction, thereby modifying
the network properties as the microstructure is
randomized.

The authors are grateful to the Department of Energy,
to the industrial sponsors of the University of Wiscon-
sin Polymerization Reaction Engineering Laboratory
(UWPREL), and to the National Science Foundation for
financial support.

NOTATIONS

Ai Concentration of active
acid groups from i-type
monomer

B*m mth element of Bernoulli
series

Bj Concentration of active
base groups from j-type
monomer

Dgel determinant in general
gel point criterion

E(WAi

out) Expected weight outward
from Ai site

E(WBi

out) Expected weight outward
from Bi site

E(Wi) Total expected weight at-
tached to a random Ui

H( x) Heaviside step function (1
if x $ 0 else 0)

Lij Concentration of linkages
between Ai and Bj

Mw Weight average molecular
weight

pAi
Conversion of Ai

pBj
Conversion of Bj

P( Aiuai) Probability that acid site
on i-type monomer (ai)
is unreacted

P(Uj 2 ba 2 Uiuai) Probability that ai is
linked to a bj

P(Biubi) Probability that base site
on i-type monomer (bi)
is unreacted

P(Uj 2 ab 2 Uiubi) Probability that bi is
linked to an aj

P(nAi
, {naij

},
nBi

, {nbji
}uUi) Probability of finding spe-

cific connectivity on Ui

[PAB]ij Matrix of P(Uj 2 ba
2 Uiuai)

[PBA]ij Matrix of P(Uj 2 ab
2 Uiubi)

P(FAi

out) Probability of finite chain
at Ai site

P(FBi

out) Probability of finite chain
at Bi site

P(Fi
out) Probability that randomly

chosen Ui is in sol phase
P(Xi, na, nb) Probability that randomly

chosen Ui is a crosslink
Ui Concentration of type i re-

peat unit
WCAi

Weight of condensate res-
idue from Ai

Wai
Weight of linkage residue

from Ai

WCBi
Weight of condensate res-

idue from Bi

Wbi
Weight of linkage residue

from Bi

WUi
Weight of i-type monomer

without functional groups
[WPCA]i Vector of WCAi

P( Aiuai)
[WPCB]i Vector of WCBi

P(Biubi)
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[WU]i Vector of WUi
1 aiWai

1 biWbi

Xi Concentration of i-type
monomer units serving
as a crosslink

Xtot Total concentration of
crosslinks

Greek Letters

ai Number of acid groups on i-type monomer
[a]ij Matrix of aidij

bi Number of base groups on i-type monomer
[b]ij Matrix of bidij

dij Kronecker delta (1 if i 5 j else 0)

vi Weight fraction of i-type monomer units
vsol Weight fraction of the sol phase
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